Inhibitory action of polyunsaturated fatty acids on Cdt1-geminin interaction.
نویسندگان
چکیده
A human replication initiation protein, Cdt1, is a central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by direct binding. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance, for example, by geminin silencing with small interfering RNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. We established a high throughput screening system based on a modified enzyme-linked immunosorbent assay to identify compounds that interfere with human Cdt1-geminin binding. Using this system, we screened inhibitors from natural compounds, and found that a fatty acid, linoleic acid (C18:2), from a basidiomycete, inhibited Cdt1-geminin interaction in vitro. Of the commercially purchased linear-chain fatty acids tested, the inhibitory effect of oleic acid (C18:1) was the strongest, with 50% inhibition observed at concentrations of 9.6 microM. Since trans-configuration, the ester form, and the addition of the hydroxyl group of oleic acid had no influence on C18:1 fatty acid derivatives, both parts of a carboxylic acid and an alkyl chain containing cis-type double bonds of fatty acid might be essential for inhibition. Surface plasmon resonance analysis demonstrated that oleic acid was able to bind selectively to Cdt1, but did not interact with geminin. Using a three-dimensional computer modeling analysis, oleic acid was conjectured to interact with the geminin interaction interface on Cdt1, and the carboxyl group of oleic acid was assumed to form hydrogen bonds with the residue of Arg342 of Cdt1. These results suggested that, at least in vitro, oleic acid-containing cell membranes of the lipid bilayer inhibit Cdt1-geminin complex formation by binding to Cdt1 and thereby liberating Cdt1 from inhibition by geminin.
منابع مشابه
Functional domains of the Xenopus replication licensing factor Cdt1
During late mitosis and early G1, replication origins are licensed for subsequent replication by loading heterohexamers of the mini-chromosome maintenance proteins (Mcm2-7). To prevent re-replication of DNA, the licensing system is down-regulated at other cell cycle stages. A small protein called geminin plays an important role in this down-regulation by binding and inhibiting the Cdt1 componen...
متن کاملDynamic interactions of high Cdt1 and geminin levels regulate S phase in early Xenopus embryos.
Cdt1 plays a key role in licensing DNA for replication. In the somatic cells of metazoans, both Cdt1 and its natural inhibitor geminin show reciprocal fluctuations in their protein levels owing to cell cycle-dependent proteolysis. Here, we show that the protein levels of Cdt1 and geminin are persistently high during the rapid cell cycles of the early Xenopus embryo. Immunoprecipitation of Cdt1 ...
متن کامل3. A role for Cdt1 and Geminin in regulating genomic integrity and cancer promotion in tumor cells 4. Geminin and Cdt1 as markers for cancer prognosis 5. Perspectives: Geminin and Cdt1 as players in the molecular mechanisms of carcinogenesis
Cdt1 and its inhibitor Geminin are important regulators of replication licensing. In normal cells, a critical balance between these two proteins ensures that firing of each origin along the genome will take place only once per cell cycle. Cdt1 overexpression in cell lines and animals leads to aberrant replication, activates DNA damage checkpoints and predisposes for malignant transformation. Ge...
متن کاملCaenorhabditis elegans geminin homologue participates in cell cycle regulation and germ line development.
Cdt1 is an essential component for the assembly of a pre-replicative complex. Cdt1 activity is inhibited by geminin, which also participates in neural development and embryonic differentiation in many eukaryotes. Although Cdt1 homologues have been identified in organisms ranging from yeast to human, geminin homologues had not been described for Caenorhabditis elegans and fungi. Here, we identif...
متن کاملA Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus.
Initiation of DNA synthesis involves the loading of the MCM2-7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1-geminin complex licenses chromatin, but prevents rereplication, working as a mole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of molecular medicine
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2008